FWH: Support for Matrix calculations

FWH: Support for Matrix calculations

Postby nageswaragunupudi » Thu Dec 10, 2020 8:31 pm

In the coming version, FWH provides an easy interface to perform complex matrix calculations with its new class FW_Matrix.

Using this class, matrix calculations can be as simple as performing normal arithmetic like this:
Code: Select all  Expand view  RUN

matrix3 := matrix1 * matrix2
 

matrix3 is an FW_Matrix() object obtained by matrix multiplication of matrix1 and matrix2, which are FW_Matrix() objects.

Same way to get Inverse of a matrix
Code: Select all  Expand view  RUN

matrix_inverse := matrix1 ^ -1
 


A simple way to view a matrx object:
Code: Select all  Expand view  RUN

? oMatrix
 

Image

While we can use corresponding methods of the class, in many cases using operators like above makes is much easier.
Example:
Code: Select all  Expand view  RUN

output := ( training_set_inputs * synaptic_weights ):Sigmoid()
synaptic_weights += ( training_set_inputs:Transpose() * ( training_set_outputs - output ) * output * output:Calc( { |x| 1 - x } ) )
 

In the above code, all variables are FW_Matrix objects.

This is a simple sample program:
fwh\samples\matrix01.prg:
Code: Select all  Expand view  RUN

#include "fivewin.ch"

#xtranslate matrix( <a> ) => FW_Matrix():New( <a> )

//----------------------------------------------------------------------------//

function Main()

   local M1, M2, M3, M4

   M1    := matrix( { { 1, 2, 3 }, { 0, 1, 5 }, { 5, 6, 0 } } )
   ? "Matrix inversion:",       M1, "^ -1 =", M2 := M1 ^ -1
   ? "Multiply with Inverse",   M1, "X", M2, "=", M3 := M1 * M2
   ? "Is the product", M3, "Identity Matrix?", M3 == 1

   M2    := matrix( { { 10,20, 30 }, { 40, 50, 60 } } )
   ? "Another matrix multiplication", M2, "X", M1, "=", M3 := M2 * M1
   ? "Check by dividing matrices", M3, "/", M1, "=", M4 := M3/M1
   ? "Is result correct?", M4, "==", M2, "=", M4 == M2

   ? "Scalar multiplication by 100:", M2, "X", 100, "=", M2 * 100

return nil

//----------------------------------------------------------------------------//
 


In the above sample, these lines of code:
Code: Select all  Expand view  RUN

   M1    := matrix( { { 1, 2, 3 }, { 0, 1, 5 }, { 5, 6, 0 } } )
   ? "Matrix inversion:",       M1, "^ -1 =", M2 := M1 ^ -1
   ? "Multiply with Inverse",   M1, "X", M2, "=", M3 := M1 * M2
   ? "Is the product", M3, "Identity Matrix?", M3 == 1
 

produce this result:
Image

These lines of code:
Code: Select all  Expand view  RUN

   M2    := matrix( { { 10,20, 30 }, { 40, 50, 60 } } )
   ? "Another matrix multiplication", M2, "X", M1, "=", M3 := M2 * M1
   ? "Check by dividing matrices", M3, "/", M1, "=", M4 := M3/M1
   ? "Is result correct?", M4, "==", M2, "=", M4 == M2
 

produce this result:
Image

This last line of code:
Code: Select all  Expand view  RUN

   ? "Scalar multiplication by 100:", M2, "X", 100, "=", M2 * 100
 

produces this result:
Image

Detailed documentation of the class FW_Matrix follows. In this class, all computations are performed in Harbour code. Though this is quite fast enough mostly, there can be more demanding applications that need complex matrix calculations performed in large loops. To support this, highly optimized C level functions are also provided.
Regards

G. N. Rao.
Hyderabad, India
User avatar
nageswaragunupudi
 
Posts: 10648
Joined: Sun Nov 19, 2006 5:22 am
Location: India

Re: FWH: Support for Matrix calculations

Postby nageswaragunupudi » Thu Dec 10, 2020 9:35 pm

CLASS FW_Matrix:


READ ONLY DATAS AND ACCESS METHODS:

DATA aMatrix READONLY
DATA nRows, nCols READONLY
ACCESS lSquare INLINE ( ::nRows == ::nCols )
ACCESS Determinant INLINE If( ::nRows == ::nCols, m_determinant( ::aMatrix ), 0 )
ACCESS IsIdentity

CONSTRUCTOR METHODS:

METHOD New( aArray ) CONSTRUCTOR
METHOD Identity( nSize ) CONSTRUCTOR // --> Identity matrix of nSize rows and nSize cols.
METHOD Random( nRows, nCols, nMin, nMax, lInteger ) CONSTRUCTOR
nMin and nMax default to -1 and +1
Returns a matrix with size nRows,nCols with each element initialized with a random value between nMin and nMax. If lInteger is .t., all the values are integers.


METHODS TO PRINT OR VIEW:

METHOD View( [cTitle] ) // Displays the array in xbrowse
METHOD AsText( [lCrlf := .f.] ) // --> string as box or single line

METHODS FOR CALCULATIONS:

METHOD Calc( bCalc, u ) // or ( u, bCalc )

Returns a new matrix object, evaluating bCalc on every element of the
matrix using the operand "u". "u" can be a scalar number of a matrix.
bCalc is evaluated with two params |x,y| where
x is ::aMatrix[ nRow, nCol ] for each row col and
y is the operand if numeric or corresponding u[ nRow, nCol ] if matrix and
nil if u is nil


METHOD Add( u ) INLINE ::Calc( { |x,y| x + y }, u )
METHOD Subtract( u ) INLINE ::Calc( { |x,y| x - y }, u )
METHOD SubtractFrom( u ) INLINE ::Calc( { |x,y| y - x }, u )
METHOD Negative() INLINE ::Calc( { |x| -x } )
METHOD ScalarInverse() INLINE ::Calc( { |x| 1 / x } )
METHOD Exp() INLINE ::Calc( { |x| Exp( x ) } )
METHOD Sigmoid() INLINE ::Calc( { |x| 1 / ( 1 + Exp( -x ) ) } )
METHOD Sigmoid_derivative() INLINE ::Calc( { |x| x * ( 1 - x ) } )


METHOD DevideBy( u )
METHOD DevideFrom( u )
METHOD Transpose()
METHOD SumOfRows()


METHOD LinearMultiply( u ) INLINE ::Calc( { |x,y| x * y }, u )
MESSAGE MatrixMultiply METHOD mmult
METHOD mmult( u )
METHOD Multiply( u ) // Linear multiply if u is numeric or matrix multiply if u is matrix


METHOD Linear( lSet ) INLINE ( ::plLinear := If( lSet == nil, .t., lSet ), Self )

matrix:Linear() operator operand always performs a linear calculation.

METHOD Invert()
METHOD Inverse() INLINE ::Invert()

OPERATOR "+" ARG u INLINE ::Add( u )
OPERATOR "-" ARG u INLINE ::Subtract( u )
OPERATOR "*" ARG u INLINE ::Multiply( u )
OPERATOR "/" ARG u INLINE ::DevideBy( u )
OPERATOR "==" ARG u INLINE ::IsEqual( u )
OPERATOR "^" ARG u INLINE If( u == -1, ::Inverse(), ::Calc( { |x,y| x ^ y }, u ) )

METHOD ByIndex( i ) OPERATOR "[]"
matrix[ nRow ] --> row as a single dimentional array. Same as ::aMatrix[ nRow [
matrix[ nRow, nCol ] --> value of ::aMatrix at nRow, nCol


It is recommended to use operators +-*/^ and == instead of calling the corresponding methods.

OPERATOR *:
matrix1 * matrix2 --> result matrix of matrix multiplication of matrix1 and matrix2
matrix1 * number --> new matrix with all elements of matrix1 multiplied the number.
matrix1:Linear() * matrix2 --> new matrix with all elements of matrix1 multiplied by each corresponding element in matrix2
Regards

G. N. Rao.
Hyderabad, India
User avatar
nageswaragunupudi
 
Posts: 10648
Joined: Sun Nov 19, 2006 5:22 am
Location: India

Re: FWH: Support for Matrix calculations

Postby nageswaragunupudi » Thu Dec 10, 2020 10:47 pm

FW_Matrix without FWH:

FW_Matrix class can be directly used in console mode, without using FWH at all.

Sample:
Code: Select all  Expand view  RUN

#xtranslate matrix( <a> ) => FW_Matrix():New( <a> )

//----------------------------------------------------------------------------//

function Main()

   local M1, M2, M3, M4

   M1    := matrix( { { 1, 2, 3 }, { 0, 1, 5 }, { 5, 6, 0 } } )
   M2    := matrix( { { 10,20 }, { 30, 40 }, { 50, 60 } } )
   M3    := M1 * M2

   ? M1:AsText(), "X", M2:AsText(), "=", M3:AsText()

return nil

//----------------------------------------------------------------------------//
#include "..\source\function\matrices.prg"
//----------------------------------------------------------------------------//
 


Build with build.bat.

Image
Regards

G. N. Rao.
Hyderabad, India
User avatar
nageswaragunupudi
 
Posts: 10648
Joined: Sun Nov 19, 2006 5:22 am
Location: India

Re: FWH: Support for Matrix calculations

Postby nageswaragunupudi » Fri Dec 11, 2020 12:27 am

A library of C functions is provided to build highly efficient C level programs. These functions are independent of FW_Matrix class.

In this library, matrix is stored in the following structure:
Code: Select all  Expand view  RUN

typedef struct _MATRIX
{
   int rows;
   int cols;
   int len;
   int xlen;
   double * array;
} MATRIX, * PMATRIX;
 


Harbour level functions to access the C level functions:

Code: Select all  Expand view  RUN

MATRIX_CREATE( aArray ) --> Pointer to Matrix structure using aArray
MATRIX_IDENTITY( nSize ) --> pIdentityMatrix
MATRIX_RANDOM ( nRows, nCols, nMin = -1.0, nMax = 1.0, lIntegers ) --> pRandomMatrix
MATRIX_RELEASE( pMatrix )

MATRIX_TRANSPOSE( pMatrix ) --> pTransposedMatrix
MATRIX_VAL( pMatrix, nRow, nCol ) --> Value
MATRIX_ROW( pMatrix, nRow ) --> aRow
MATRIX_ARRAY( pMatrix ) --> aMatrix
MATRIX_INVERT( pMatrix ) --> Inverse of pMatrix
MATRIX_REFLECT( pMatrix ) --> Transposes the same Square Matrix

MATRIX_CALC( pmatrix1, cOp, double/pmatrix2, [lReverse], [presultmatrix] ) --> pResultMatrix
MATRIX_MMULT( pmatrix1, pmatrix2 ) --> pProductMatrix
MATRIX_DETERMINANT( pMatrix ) --> determinant
MATRIX_SUMOFROWS( matrix, [result] ) --> result
 


C functions that can be used in an application program written in C.
Code: Select all  Expand view  RUN

double calc( double x, char cOp, double y, HB_BOOL inverse );
PMATRIX matrix_new( int iRows, int iCols );
void matrix_release( MATRIX * matrix );
PMATRIX matrix_check( PMATRIX matrix, int iRows, int iCols );
PMATRIX matrix_clone( MATRIX * matrix );
void matrix_copyfrom( PMATRIX dst, PMATRIX src );
PMATRIX matrix_identity( int iSize );
PMATRIX matrix_random( int iRows, int iCols, double dMin, double dMax, HB_BOOL bInteger );
PMATRIX matrix_transpose( PMATRIX matrix, PMATRIX result );
PMATRIX matrix_scalar_calc( PMATRIX m1, char cOp, double operand, HB_BOOL inverse, PMATRIX result );
PMATRIX matrix_sigmoid( PMATRIX matrix, PMATRIX result );
PMATRIX matrix_sigmoid_derivative( PMATRIX matrix, PMATRIX result );
PMATRIX matrix_linear_calc( PMATRIX m1, char cOp, PMATRIX m2, PMATRIX result );
PMATRIX matrix_sumofrows( PMATRIX matrix, PMATRIX result );
PMATRIX matrix_mmult( PMATRIX m1, PMATRIX m2, PMATRIX result );
double array_determinant( double * array, int iSize );
double matrix_determinant( PMATRIX matrix );
PMATRIX matrix_invert( PMATRIX matrix );
 

In the above functions, if the parameter PMATRIX result is NULL, a new matrix of the required size is created and returned. This needs to be released using matrix_release(). If result is a valid matrix pointer, then this matrix is used to fill the result and returned, after resizing if necessary. This avoids the overhead of creating a new matrix and releasing it.

Normally, FW_Matrix class should be enough for most applications. Where large computations are to be performed in large loops writing the code in C using these C functions improves the execution speed considerably.

Example:
This code written using FW_Matrix() is taking 3.0 to 4.0 seconds for executing 10,000 times.
Code: Select all  Expand view  RUN

   for i := 1 to 10000

      // Forward Propagation
      hidden_layer_activation    := inputs * hidden_weights
      hidden_layer_activation    += hidden_bias
      hidden_layer_output        := hidden_layer_activation:Sigmoid()

      output_layer_activation    := hidden_layer_output * output_weights
      output_layer_activation    += output_bias
      predicted_output           := output_layer_activation:Sigmoid()

      // Backpropagation
      error                      := expected_output - predicted_output
      d_predicted_output         := error:Linear() * predicted_output:sigmoid_derivative()
      error_hidden_layer         := d_predicted_output * output_weights:Transpose()
      d_hidden_layer             := error_hidden_layer:Linear() * hidden_layer_output:sigmoid_derivative()

      // Updating Weights and Biases
      output_weights             += ( hidden_layer_output:Transpose() * d_predicted_output ) * lr
      output_bias                += ( d_predicted_output:SumOfRows() * lr )
      hidden_weights             += ( inputs:Transpose() * d_hidden_layer ) * lr
      hidden_bias                += ( d_hidden_layer:SumOfRows() * lr )

   next
 


When the same logic is translated using the above C functions as below, the loop is executed in about 0.01 second.
Code: Select all  Expand view  RUN

#pragma BEGINDUMP

#include <hbapi.h>
#include "fwmatrix.h"

HB_FUNC( TRAIN )
{
   PMATRIX inputs42          = hb_parptr( 1 );
   PMATRIX expected_output41 = hb_parptr( 2 );
   PMATRIX hidden_weights22  = hb_parptr( 3 );
   PMATRIX hidden_bias12     = hb_parptr( 4 );
   PMATRIX output_weights21  = hb_parptr( 5 );
   PMATRIX output_bias11     = hb_parptr( 6 );
   double lr = 0.1;
   int i;

   PMATRIX hidden_layer_activation42 = matrix_new( 4, 2 );
   PMATRIX hidden_layer_output42     = matrix_new( 4, 2 );
   PMATRIX hidden_layer_output_der42 = matrix_new( 4, 2 );
   PMATRIX hidden_layer_output24     = matrix_new( 2, 4 );
   PMATRIX output_layer_activation41 = matrix_new( 4, 1 );
   PMATRIX predicted_output41        = matrix_new( 4, 1 );
   PMATRIX error41                   = matrix_new( 4, 1 );
   PMATRIX predicted_output_der41    = matrix_new( 4, 1 );
   PMATRIX d_predicted_output41      = matrix_new( 4, 1 );
   PMATRIX d_predicted_output_sum11  = matrix_new( 1, 1 );
   PMATRIX output_weights12          = matrix_new( 1, 2 );
   PMATRIX error_hidden_layer42      = matrix_new( 4, 2 );
   PMATRIX d_hidden_layer42          = matrix_new( 4, 2 );
   PMATRIX inputs24                  = matrix_new( 2, 4 );

   PMATRIX tmp21                     = matrix_new( 2, 1 );
   PMATRIX tmp22                     = matrix_new( 2, 2 );
   PMATRIX tmp12                     = matrix_new( 1, 2 );

   for ( i = 0; i < 10000; i++ )
   {

      int p;

      // Forward Propagation
      matrix_mmult( inputs42, hidden_weights22, hidden_layer_activation42 );
      matrix_linear_calc( hidden_layer_activation42, '+', hidden_bias12, hidden_layer_activation42 );
      matrix_sigmoid( hidden_layer_activation42, hidden_layer_output42 );

      matrix_mmult( hidden_layer_output42, output_weights21, output_layer_activation41 );
      matrix_linear_calc( output_layer_activation41, '+',output_bias11, output_layer_activation41 );
      matrix_sigmoid( output_layer_activation41, predicted_output41 );

      // Backpropagation

      matrix_linear_calc( expected_output41, '-', predicted_output41, error41 );
      matrix_sigmoid_derivative( predicted_output41, predicted_output_der41 );
      matrix_linear_calc( error41, '*', predicted_output_der41, d_predicted_output41 );
      matrix_transpose( output_weights21, output_weights12 );
      matrix_mmult( d_predicted_output41, output_weights12, error_hidden_layer42 );
      matrix_sigmoid_derivative( hidden_layer_output42, hidden_layer_output_der42 );
      matrix_linear_calc( error_hidden_layer42, '*', hidden_layer_output_der42, d_hidden_layer42 );

      // Updating Weights and Biases

      // update output_weights21
      matrix_transpose( hidden_layer_output42, hidden_layer_output24 );
      matrix_mmult( hidden_layer_output24, d_predicted_output41, tmp21 );
      for ( p = 0; p < tmp21->len; p++ ) { tmp21->array[ p ] *= lr; }
      matrix_linear_calc( output_weights21, '+', tmp21, output_weights21 );
      //

      // update output_bias11
      matrix_sumofrows( d_predicted_output41, d_predicted_output_sum11 );
      for ( p = 0; p < d_predicted_output_sum11->len; p++ ) { d_predicted_output_sum11->array[ p ] *= lr; }
      matrix_linear_calc( output_bias11, '+', d_predicted_output_sum11, output_bias11 );

      // update hidden_weights22
      matrix_transpose( inputs42, inputs24 );
      matrix_mmult( inputs24, d_hidden_layer42, tmp22 );
      for ( p = 0; p < tmp22->len; p++ ) { tmp22->array[ p ] *= lr; }
      matrix_linear_calc( hidden_weights22, '+', tmp22, hidden_weights22 );

      // update hidden_bias12
      matrix_sumofrows( d_hidden_layer42, tmp12 );
      for ( p = 0; p < tmp12->len; p++ ) { tmp12->array[ p ] *= lr; }
      matrix_linear_calc( hidden_bias12, '+', tmp12, hidden_bias12 );

   }

   hb_retptr( predicted_output41 );

   matrix_release( hidden_layer_activation42 ) ;
   matrix_release( hidden_layer_output42     ) ;
   matrix_release( hidden_layer_output_der42 ) ;
   matrix_release( hidden_layer_output24     ) ;
   matrix_release( output_layer_activation41 ) ;
   matrix_release( error41                   ) ;
   matrix_release( predicted_output_der41    ) ;
   matrix_release( d_predicted_output41      ) ;
   matrix_release( d_predicted_output_sum11  ) ;
   matrix_release( output_weights12          ) ;
   matrix_release( error_hidden_layer42      ) ;
   matrix_release( d_hidden_layer42          ) ;
   matrix_release( inputs24                  ) ;
   matrix_release( tmp21                     ) ;
   matrix_release( tmp22                     ) ;
   matrix_release( tmp12                     ) ;

}

#pragma ENDDUMP
 


Next release of FWH provides samples nn1.prg, nn2.prg, nn3.prg, nn4.prg, nn4c.prg and matrix01.prg
Regards

G. N. Rao.
Hyderabad, India
User avatar
nageswaragunupudi
 
Posts: 10648
Joined: Sun Nov 19, 2006 5:22 am
Location: India


Return to FiveWin for Harbour/xHarbour

Who is online

Users browsing this forum: No registered users and 76 guests